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Abstract 

Fundamental innovation usually involves huge upfront costs, but the benefits are spread 

across various sectors of the economy. Given the large costs and limited appropriability of the 

benefits associated with the innovation, individual firms underinvest in these innovations relative 

to the socially optimal level. We find that mergers and acquisitions (M&As) can internalize the 

positive externalities by merging firms from both the user industries and the producer industries 

of an innovation. Using the US patent citation dataset, we define the user and producer relationship 

between each pair of industries and between each pair of industry and technological class. We then 

show that after a merger between an innovation user and an innovation producer, the quantity of 

innovation output increases, and the increase is driven by targeted technological classes.  
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1. Introduction 

Technological innovation is a key driver of economic growth. However, innovations usually 

involve huge upfront costs, and the benefits associated with these innovations are spread across 

various sectors of society so that the value of these benefits is not easily appropriable by the 

innovating firm. The positive externalities of fundamental innovations cause individual firms to 

underinvest in innovations. For example, an electric car battery manufacturer may work on a more 

efficient way of storing energy. If the technology is successfully developed, it can be used not only 

in electric cars, but also in other industries’ products, such as home appliances or cell phones. 

While the electric car battery manufacturer can reap the profits from selling electric car batteries, 

it is hard for the firm to appropriate the profits of the battery arising from its use in other industries. 

Therefore, the electric car battery manufacturer will underinvest in the research and development 

(R&D) of the more efficient battery technology.  

In this paper, we empirically test whether mergers and acquisitions (M&As) can internalize 

the positive externalities by merging firms from both the user industries and the producer industries 

of an innovation. After the merger or acquisition, the combined firm is able to capture the benefits 

associated with the innovation in both user industries and producer industries. Therefore, the 

combined firm should have greater incentives to fund the innovation and file more patents. 

The notion that innovative activities are difficult to finance in a freely competitive 

marketplace has been around for a long time1, and this is a typical positive externality problem in 

economics. Economists have realized that the market can sometimes (at least partly) internalize 

                                                 
1 The discussion perhaps starts with the classic articles of Nelson (1959) and Arrow (1962). Even in the presence of 

various mechanisms to increase appropriability such as patents and other forms of intellectual property protection, the 

underinvestment may not completely go away. For example, Mazzucato (2015) points out that fundamental 

innovations underlying such popular products as the iPod and iPhone manufactured by Apple, and Google’s search 

algorithm, were funded by U.S. government in various ways (e.g., through agencies such as DARPA or the National 

Science Foundation).  
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the positive externality. For example, beekeepers can collect honey from their hives, but the bees 

will also pollinate surrounding fields and thus aid farmers. If the beehives and fields are owned 

separately, the number of beehives may be lower than the socially optimal level. However, if the 

farmer also owns beehives, he or she will increase the number of beehives. Similarly, by funding 

firms from both the user industries and the producer industries of an innovation, the combined firm 

has incentives to increase the innovation because it will capture a higher proportion of the benefits 

of the innovation than it would otherwise.  

Empirically, we test this hypothesis by using two datasets: M&As from the Thomson 

Reuters Securities Data Company (SDC) Platinum, which contains data on how firms merge with 

each other, and a novel US patent and citation dataset, which contains data on firms that file the 

patents and citations received by the patents. We start by defining the upstream (innovation-

producing) and downstream (innovation-using) firms for each industry using the patent citation 

dataset. If patents filed by firms from one industry are most cited by another industry in the 

previous 10 years, we define the former industry as the upstream industry and latter industry as 

the downstream industry. Firms in the upstream industry are the innovation producers, while firms 

in the downstream industry are the innovation users. We then show that after a merger between 

firms in upstream and downstream industries (i.e., both producers and users of an innovation), the 

combined firm becomes more innovative compared to the case where the two firms remain 

separate. We use various measures of innovation that are used in the literature. 

Bena and Li (2014) ask a similar question and find that if two firms share the same 

innovation knowledge base, the combined firm after the merger is more productive compared to 

the case where the two firms remain separate. One drawback of their result comes from the firm 

level data. For instance, Google Inc. announced an acquisition against Motorola Mobility in 2011. 
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In the year before the announcement, Google filed around 1,000 patents in multiply technological 

classes, and Motorola Mobility had 6,800 pending patents, yet not all these technological classes 

of the acquirer share the same knowledge with the innovation of the target. The synergy of 

innovation related mergers and the increase of innovation output should mainly come from the 

targeted technological classes. 

To better pin down the effect of mergers on patents, we further construct a firm tech-class 

level dataset. Instead of providing associated SIC codes in patent documents, the United States 

Patent and Trademark Office (USPTO) assigns patents to three-digit technological classes that are 

based on technology categorization instead of final product categorization. Because targets in 

about 90% of the M&A deals are private firms, their patent and technological class data are 

unavailable. Therefore, in this setting, we know the technological classes of the acquirers and the 

industries the targets belong to. Similar to the industry-to-industry relationship, we define an 

industry-to-technological-class relationship using the patent citation dataset. If patents filed by 

firms from one industry are most cited by (most likely to cite) patents from one technological class 

in the previous 10 years, we define that the industry and the class have a producer-user (user-

producer) relationship. We can then compare the affected technological classes to other unaffected 

classes to better pin down the effect of mergers between innovation producers and users. Moreover, 

a technological class can be related to the target firm in one merger and unrelated in another merger 

at the same time, so we can then capture the effect of related M&A within the same technological 

class. We show that targeted firm tech-classes become more innovative after mergers compared to 

other firm tech-classes.  

If M&As between innovation users and producers do internalize positive externalities and 

incentivize innovation, firms should fund more innovation in targeted technological classes and 
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less in other classes, compared to before mergers. We find that this is indeed the case: we observe 

an increase of innovation output in the targeted classes and a decline in other classes. Moreover, 

we find that financially unconstrained firms tend to reallocate resources to targeted classes from 

other unaffected classes. 

Finally, we test the impact of innovation related M&As on tech-class level innovation. If a 

technological class is more likely to be involved in related mergers, the innovation should be 

enhanced in that technological class. Our results support this hypothesis. 

The first identification challenge comes from the concern that the increase may be 

mechanical. It may be the case that innovation increases after mergers not because of the synergy 

or internalizing positive externality, but simply due to the fact that target firm files patents anyway. 

For example, Sevilier and Tian (2012) show that firms undertake M&As for the purpose of 

acquiring innovation. To address this concern, first, we use unrelated mergers as the control group 

in the firm-level regressions so that the mechanical increase cancels out with each other. This may 

not eliminate the concern of mechanical increase because one can argue that target firms in related 

mergers tend to be more innovative. We address this concern in the firm-class level regressions. 

Targets and acquirers in related mergers do not necessarily file patents in the same technological 

class. In fact, among the M&A deals with public target firms, the technological classes of acquirers 

and targets do not overlap in most of the deals. Moreover, even when acquirers and targets have 

overlapping technological classes, they are not necessarily defined as targeted classes, and are 

included in the control group. Therefore, the increase of patents in targeted technological classes 

are not caused by mechanical reasons. 

The second concern is that the increase of innovation and M&A activity can be endogenous. 

For example, a firm with large amount of free cash may invest more in innovation and M&A 
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activities at the same time. We address this concern by including M&A deal fixed effects and 

technological class fixed effects in the regressions. To further establish a causal effect between 

M&A activity and innovation, we follow the method developed by Savor and Lu (2009) and 

compare the change of innovation around successful mergers to that of mergers withdrawn for 

reasons that are exogenous to innovation. For example, we exclude mergers that are withdrawn 

due to the disagreement on the future development strategy between the acquirer and the target 

because this reason may be related to future innovation strategy. By ruling out the systematic 

relation between a firm’s innovation and the probability of a failed merger, this strategy can help 

identify the causal effect of a firm’s M&A on its innovation output. A firm that decides to invest 

more in innovation can choose to acquire another firm with relevant knowledge to achieve this 

goal. However, in the case where the merger is withdrawn, the innovation output in that firm does 

not increase. Our result is consistent with existing literature and shows that the innovation output 

increases more after successful user-producer mergers compared to failed user-producer mergers. 

Another identification challenge comes from shocks at the industry level. For instance, 

suppose an industry is growing fast and its product market is becoming more and more competitive. 

Firms will merge to exploit synergies to differentiate its products from its competitors. By the 

same token, the innovation of the industry may also reach the peak given the inverted-U shape 

relationship between competition and innovation (Aghion, et al 2005). This industry with more 

patents are more likely to become the top producer or user of innovation of other industries. 

Therefore, industry level shocks may be driving both innovation related M&As and innovation 

outputs. Fortunately, the concern of such shocks can be mitigated by using firm tech-class level 

data because the tech-class level relationship is less correlated with acquirers’ industry condition. 

In addition, we control for any shocks to technological classes by including a full set of class-year 
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fixed effects. The fixed effects are identified because a technological class can be involved in a 

related merger and an unrelated merger at the same time.  

Our paper contributes to the M&A literature and the innovation literature in at least two 

ways. We are the first to develop a measure of innovation-user and innovation-producer industries 

and a user-producer relationship between industries and technological classes, which can be used 

in future research. And we show that M&As between an innovation-user and an innovation-

producer can internalize the positive externalities associated with funding innovation, and the 

increase of innovation is driven by the targeted technological classes.  

The remainder of the paper is organized as follows. We discuss the related literature in 

section 2. Sample construction, empirical methodology, and sample overview are described in 

section 3. Empirical results on changes in innovations around M&As are reported in section 4. 

Section 5 concludes the paper. 

 

2. Literature Review 

Our study is related both to studies in firm innovation and studies in M&As. It is well documented 

that innovation is an important driver of firm performance (Bloom and Van Reenen 2002; Levine 

2005), and innovation’s importance is well understood by the market, as the number of citations 

received by patents correlates with a firm’s market value (Hall, Jaffe, and Trajtenberg 2005). 

Kogan et al. (2017) also find that the stock market positively reacts to the approval of patents that 

are eventually highly cited, and that such patents predict firm productivity. Given the importance 

of firm innovation, it is essential to understand the factors that incentivize it. Some papers 

empirically show that CEOs’ incentives have a significant impact on motivating innovation. For 
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example, both corporate venture capital (Chemmanur, Loutskina, and Tian 2014) and stock options 

in CEOs’ compensation (Chang et al. 2015) motivate managers to undertake innovative projects.  

Despite the importance and incentive of innovation, funding it can be difficult. Brown, 

Fazzari, and Petersen (2009) is the first paper to show that cash flow and external equity are 

essential to financing innovations in young firms. Large, publicly traded firms also depend on 

banks (Hall and Lerner 2010), and they receive cheaper bank loans if they produce higher-quality 

patents. That being said, firms and lenders consider the cost of innovations and the value of the 

benefits associated with the innovations. If the benefit of innovation is not easily appropriable and 

spread across industries, this positive externality will cause firm to underinvest in innovation. 

Several papers study the effect of M&As on innovation. Seru (2014) shows that innovation 

decreases after diversifying M&As because inventors become less productive. Sevilir and Tian 

(2012) find a positive relationship between M&As and innovation and show that acquiring 

innovation is an important motive for undertaking M&As. Our paper differs in that we consider 

the citation relationship of the acquirer and the target firm prior to the M&A and study the synergy 

from the internalization. Phillips and Zhdanov (2012) find that acquiring firms that have 

successfully innovated can be a more efficient path to obtaining innovation than innovating 

directly oneself. We take care of the mechanical increase of innovation after M&As by using 

unrelated M&As as a control group and using firm-class level data. The paper that is most relevant 

to ours is Bena and Li (2014). They show that M&As are more likely to be conducted between 

firms with technological overlap, and the innovation output increases after such mergers. Their 

identification strategy is to compare successful mergers to withdrawn mergers. Our paper is 

different in the sense that our main results come from all available mergers that include about 

2,804 deals, compared to the 60 withdrawn mergers in their analysis. Additionally, we use firm-
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technological-class level data to better pin down the effect of related mergers on innovation. We 

will elaborate on this idea in the empirical part of the paper. 

This paper differs from the previous literature in that it is the first to study the citation links 

between industries and technological classes using a novel patent citation dataset. The paper shows 

that merging two firms from the user industry and the producer industry mitigates the positive 

externalities of innovations and enhances the innovation output afterward. We are also the first to 

study the effect of M&As on firm tech-class level innovation, which allows us to better pin down 

the effect and mitigate the endogeneity concern. 

 

3. Data 

3.1. Sample Selection 

We use a novel dataset of patents and citations constructed by Kogan et al. (2017). The dataset 

includes the entire history of US patent documents from Google Patents. The United States Patent 

and Trademark Office (USPTO) allows only individuals to be the inventor, but an individual can 

assign granted patent to another person or to a corporation. Therefore, patents always have an 

inventor, and sometimes they have been assigned to one or more corporations. Kogan et al. then 

matched the corporation names to firms in the Center for Research in Security Prices (CRSP) stock 

return database. The dataset covers patents granted from 1926 to 2010 that are assigned to firms 

in the CRSP database. The USPTO also keeps track of all citations for patents granted from 1976 

to 2001. Compared to the NBER patent project, this dataset provides 1.9 million patents that can 

be matched to companies, 27 percent of which are not included in the NBER data.2 Another 

commonly used measure of innovation is R&D expenditures, but 65 percent of firm-year 

                                                 
2 The dataset is provided by Noah Stoffman on his website (https://iu.app.box.com/v/patents). More details of the 

patent data construction can be found in the paper and the online appendix of Kogan et al. (2017). 

https://iu.app.box.com/v/patents
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observations from Compustat have missing values. Missing R&D expenditures in financial 

statements do not necessarily mean that the firm is not innovative (Koh and Reeb 2015). Therefore, 

compared to R&D expenditures, patent-based metrics better reflect the productivity of R&D and 

more realistically reflect a firm’s innovation performance. Using this patents and citations dataset 

allows us to measure the innovation output for every public firm in every year. 

 In addition, the USPTO has developed an elaborate classification system for the patented 

inventions. This system categories technologies into about 400 3-digit patent classes, and each 

patent is assigned to a technological class. Using the classification data, we can further measure 

the innovation output of each firm in each class and analyze the effect of M&A on the firm tech-

class level. 

To identify a sample of M&As, we begin with all completed US M&As with effective 

dates from 1984 to 2007, covered by the mergers and acquisitions database of Thomson Reuters’ 

SDC Database3. We exclude the deal if: (1) either the acquirer or the target firm is from the 

financial industry (Standard Industrial Classification [SIC] codes 6000 to 6999); (2) the transaction 

value of the deal is less than $10 million, to drop the small and economically insignificant deals; 

(3) the acquiring firm cannot be matched to Compustat/CRSP; (4) the acquiring firm did not file 

any patent the year before the merger; (5) the acquiring firm exists fewer than three years before 

or after the M&A, because there is a few years’ lag between patent filings and investments on 

innovation. To make sure the acquirers are innovative before mergers, we require them to have at 

least one patent the year prior to the mergers. We do not require the target firms to be matched to 

Compustat/CRSP because most of the target firms are private firms; excluding them would result 

                                                 
3 Our sample begins in 1984 because information on M&As in SDC is less reliable before 1984. Our sample period 

ends on December 31, 2007, three years before our patent data end in 2010. Allowing a three-year period after the 

last merger can mitigate the potential truncation bias in our innovation output measures. 
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in a large drop in the sample size. Large firms tend to buy innovation by acquiring small private 

firms that are engaged in R&D, so excluding the sample of private target firms would lead to 

biased estimation. Our final M&A sample contains 2,804 deals for the period 1984 to 2007. 

3.2. Related M&As and targeted tech-classes 

To examine how mergers between innovation-user and innovation-producer can enhance 

innovation output, we need to define the user-producer relationship between industries. In year t, 

industry i and j are innovation related industries if in the previous 10 years4, the patents filed by 

firms in industry i is among the top-3 industries that cite (are cited by) patents filed by firms in 

industry j. Similarly, we define the relationship between industries and technological classes. In 

year t, industry i and technological class j are related if in the previous 10 years, the patents filed 

by firms in technological class j is among the top-3 classes that cite (are cited by) patents filed in 

industry i. In this definition, the user-producer relationship updates every year and can capture the 

changing relation over time. In our final sample, 1,567 deals are between firms from related 

industries (related M&As), and 12% of the technological classes of acquirers (targeted classes) are 

related to the target firms’ industry. 

3.3. Variables 

We employ various measures of innovation to capture different aspects of a firm’s innovation 

performance. We begin with the number of patents filed in each year and the number of citations 

received by patents in the subsequent three years after the patents are granted. We count patents at 

the time when they are filed with the USPTO because inventors have the incentives to file the 

patent as soon as it is finished, the file date is the closest to the actual time of innovation. The 

citations are counted after the publication date of a patent because this is when a patent is revealed 

                                                 
4 Using previous 3 years does not change our results. 
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to the public and starts to be cited. Because the distribution is positively skewed, we use the natural 

logarithm of these innovation measures. 

 Because there is heterogeneity across technological classes, some classes have more 

patents and receive more citations than other classes, we use citation-weighted number of patents 

and patent index to adjust for this heterogeneity. The citation-weighted number of patents scales 

the patent citation by the average number of citations a patent received in the same year and in the 

same technology class (Hall, Jaffe, and Trajtenberg 2001). We also follow Bena and Li (2014) to 

calculate the patent index of each firm. The patent index is the patent number adjusted by the 

median value of each technology class.5  However, the measures of patents and citations are 

meaningful only when used comparatively, the fact that a firm files 10 or 100 patents does not tell 

you whether the firm is highly innovative. That is, the evaluation of the patent intensity need to be 

made with references to some “benchmark” intensity. Therefore, we control for firm fixed effects 

or class fixed effects in the regressions. 

In the analyses, we use the measures of innovation output as the dependent variables. Our 

key test variables are the After dummy, which equals one if the observation is after M&As and 

zero otherwise, and the Related dummy, which equals one if the deal is a related M&A and zero 

otherwise. The After dummy captures the change of innovation around M&As, and the Related 

dummy captures the difference between related M&As and unrelated M&As. In the multivariate 

tests, we include control variables that may affect firm innovation. R&D/Assets is the R&D 

expense adjusted by total assets. Sales is the total sales as a measure of firm size. ROA is the return 

on assets, defined as the operating income before depreciation, divided by total assets. Leverage 

is the total debt divided by total assets. Capital expenditure, Capex, is the capital expenditure 

                                                 
5 Details of how to construct these measures are reported in the Appendix. 
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divided by total assets. Tangibility is the total gross property, plant, and equipment divided by total 

assets. TobinQ is the ratio of market value to book value of assets. HHI captures the competition 

of a 3-digit SIC industry. 

Table 1 reports the summary statistics of firm innovations and control variables. Panel A 

shows the summary of all acquiring firms during the sample period. Panels B, C, and D report the 

M&A characteristics. From 1984 to 2007, 2,804 deals of M&As are executed, of which 1,583 

deals are related M&As. Panel E shows the summary statistics of firm-class level innovation. An 

average firm file patents in 3.8 technological classes in the year before mergers, the median number 

is 3. An average firm file patents in 12.3 technological classes during the entire sample period, the 

median number is 10. 

[Insert Table 1 about here] 

 

4. Empirical Results 

4.1. Univariate tests 

Because firm innovation and the decision to merge are endogenously determined, it is difficult to 

compare innovation between firms involved in related M&As and unrelated M&As. Therefore, we 

use a panel structure approach to control for many factors that affect both innovation and M&A 

decisions, such as R&D, ROA, and leverage. Before doing so, we provide some simple summary 

evidence on differences in firm innovation between related and unrelated M&As. 

We first conduct a before-after comparison among firms involved in related M&As and 

unrelated M&As, respectively. In Table 2, Panel A reports the change of firm innovation and 

characteristics around related M&As. The variables are the average value of three years’ 

observations before or after M&As. The number of patents, citation-weighted number of patents, 
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and patent index all increase significantly after related M&As. The originality of patents also 

increases. In Panel B, we conduct the before-after test among firms involved in unrelated M&As, 

and the change of generality and patent index are insignificant. Panel C reports comparisons of the 

change after related M&As and unrelated M&As. The results show that the number of patents, the 

citation-weighted patents, the patent index, originality, and generality all increase by a higher 

amount after related M&As compared to unrelated M&As.  

[Insert Table 2 about here] 

4.2. Multivariate tests of firm-level innovation 

We use a panel structure to analyze the innovation around related M&As. Because the increase of 

innovation output can be mechanical, we use unrelated M&As as the control group and perform 

the difference-in-difference tests in a multivariate setting. Specifically, we estimate the following 

regression using a sample of all related and unrelated M&As:  

Innovationi,t = β0 + β1 × Afteri,t + β2 × Afteri,t × Relatedi,t  

+ β3 × Controlsi,t + ψi + δt + εi,t ,            (1) 

where Innovationi,t is one of the innovation measures of firm i in year t; Afteri,t is a dummy that 

equals one if it is after the M&As and zero otherwise; Relatedi,t equals one for mergers between 

innovation users and innovation producers (related M&As) and equals zero otherwise. We keep 6 

years data before and after each M&A because it usually takes a few years for the acquired 

knowledge to turn into patents. We include M&A deal fixed effects to difference away any time-

invariant differences among deals6 and year fixed effects to control for common trends in all M&A 

deals. Therefore, this model estimates the change over time in innovation output for the same 

cross-section units. The variable of interest is the interaction term of After dummy and Related 

                                                 
6 The coefficient on Relatedi,t is absorbed by deal fixed effects. 
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dummy that captures the change of innovation after the acquiring firm merges with a target firm 

that is in the upstream or downstream industries of patent citations. The hypothesis that related 

M&As can internalize the positive externalities predicts that the coefficient β2 will be positive, 

meaning that the combined firm will benefit from the internalization and be more productive after 

related mergers compared to unrelated mergers. 

 We include control variables commonly used in the previous literature. Bena and Li (2014) 

find that firms that are larger, have higher ROA, and have higher market-to-book ratios are more 

likely to be the acquirers. We therefore include the variable TobinQ to control for investment 

opportunities, defined as the ratio of the market value of assets to the book value of assets; Sales 

to control for size; and ROA to control for profitability, defined as operating income before 

depreciation divided by total assets. Other factors include leverage, capital expenditures, 

tangibility, and R&D expenses. Results are reported in Table 3. In all regressions throughout the 

paper, we control for M&A deal fixed effects and year fixed effects, and the p-values reported are 

based on firm-level clustered standard errors. 

[Insert Table 3 about here] 

In the first column of Table 3, the dependent variable is the total number of patents filed 

by a firm, and the coefficient on the interaction term is positive and significant at the 1 percent 

level. The result indicates that the increase of innovation after related M&As is greater than that 

after unrelated M&As. In columns 3 to 6, we use different measures of firm innovation and the 

coefficients are all significantly positive. In column 2, the coefficients on the interaction term are 

insignificant but still show a positive sign. In summary, the difference-in-difference tests in Table 

3 show that related M&As enhance the quantity and quality of innovation output more than 

unrelated M&As do. The results indicate that after the merger of two firms from related industries, 
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the combined firm is more likely to benefit from the innovation, and thus innovation output is 

enhanced to a new, optimal level.  

The coefficient on After (β1) captures the effect of unrelated M&As on innovation output, 

and they are all significantly negative as shown in Table 3. This finding is consistent with Seru 

(2014) which shows that innovation ability decreases after conglomerating mergers. Although our 

definition of unrelated is different from conglomerating, most unrelated mergers are indeed 

between firms from different industries. In addition, our results show that the decrease of 

innovation output is mitigated if the mergers are between an innovation user and an innovation 

producer.  

4.3. Firm tech-class level test 

The synergy between innovation user and innovation producer makes it easier for firms to 

appropriate the value of innovation, obtain relevant knowledge, internalize costs, more likely to 

fund innovation and thus enhance innovation output after mergers. However, this synergy and 

enhancement should mainly occur in the targeted technological classes rather than every area of 

research within the firm. To examine the effect of M&As on the targeted technological class and 

other classes within the same firm, we estimate the following firm tech-class level difference-in-

difference specification:  

 Innovationi,j,t = β0 + β1 × Afteri,t + β2 × Targeted Classi,j,t + β3 × Afteri,t × Targeted Classi,j,t 

+ β4 × Controlsi,t + ψi + δj,t  + εi,j,t ,           (2) 

where i indexes firms, j indexes technological classes, t indexes years. Afteri,t is a dummy that 

equals one if it is after the M&As; Targeted Classi,j,t equals one if the technological class j of the 

acquirer i is in a user-producer relationship with the target’s industry. The coefficient of interest is 

β3, which measures the effect of M&As on targeted classes compared to other classes. We include 
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firm fixed effects and class by year fixed effects in the regressions. The class by year fixed effects 

control for any technological class level shocks. 

 The dependent variables are various measures of firm tech-class level innovation output, 

include the number of patents filed by firm i in year t that belong to technological class j; the 

number of citations received by these patents in the subsequent 3 years after granted; the citation-

adjusted number of patents; and the patent index. The control variables are the same as those in 

equation (1). To mitigate the effect of outliers, we winsorize all variables at the 1st and 99th 

percentiles. To account for serial and cross-sectional dependence across classes within the same 

firm, we cluster standard errors at the firm level.  

 Table 4, Panel A shows the effect of M&As on innovation output of the targeted 

technological classes and other classes within the same firm. As shown in column 1, after mergers, 

the number of patents in the targeted classes increases 4.7% more compared to innovation in the 

other classes. The coefficients on the interaction term are positive in Column 3 and 4, and they are 

both significant, meaning that the citation-adjusted patents and the patent index both increase 

significantly in targeted classes compared to those of other classes.  

[Insert Table 4 about here] 

The interaction terms in the above difference-in-difference model show the difference 

between targeted classes and other classes, but do not report the exact changes in these two 

categories. It could be the case that the innovation in targeted classes increase while innovation in 

other classes remain the same, or the firm reallocate resource from other classes to the targeted 

classes. In four out of the six columns in Table 4, the coefficients on After (β1) are significantly 

negative, meaning that the innovation output decreases in other technological classes. The sum of 

coefficients on After (β1) and the interaction term (β3) captures the effect of M&As on targeted 
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technological classes, and they are all positive, meaning that the innovation output increases in 

targeted technological classes. These firm tech-class level results support the hypothesis that firms 

reallocate resources across technological classes within firms.  

4.4. Reallocation of innovation within firms 

Reallocation of resource within firms rest on the premise that firms are financially constrained, so 

that it is necessary to winner-pick the best performing sectors (Stein 1997). Giroud and Mueller 

(2015) find that financially constrained firms reallocate capital and labor to plants experiencing 

positive shocks, but there is no need for unconstrained firms to reallocate within firms because 

they can use external funding. Similarly, we expect to see reallocation of innovation funding in 

financially constrained firms. To test this hypothesis, we examine the effect separately for 

financially constrained and unconstrained firms by estimating equation (2) in two subsamples. We 

use the KZ index (Kaplan and Zingales 1997) to measure financial constraints. A firm is financially 

unconstrained (constrained) if the firm’s KZ index is below (above) the median of all firms in the 

year before M&As. Results of constrained firms are reported in Table 5, Panel A.  Panel B reports 

results using unconstrained firms.   

[Insert Table 5 about here] 

 In all six columns of Panel A, the coefficient on the After dummy are significantly negative, 

meaning that the quality and quantity of innovation output decrease in unaffected tech-classes. The 

sum of coefficients on the After dummy and After * Targeted Class estimate the effect of M&A 

on targeted tech-classes, and the values are close to zero in column 1, 3, and 4, meaning that the 

quantity of innovation output does not change in targeted classes after M&A in financially 

constrained firms. However, in column 5 and 6, the originality and generality increase significantly 

in targeted classes. The results indicate that although financially constrained firms have trouble in 
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funding innovation after related M&As, the mergers between innovation users and innovation 

producers can enhance the quality of innovation output. In Panel B, the coefficients on After and 

After * Targeted Class show that M&A enhance the innovation output in targeted classes in 

financially unconstrained firms, while it remains the same in other unaffected classes. The 

difference of results in Panel A and B indicates that financially constrained firms have to reallocate 

resource from other classes to fund targeted classes, while unconstrained firms can fund more 

innovation in targeted classes and maintain the innovation level in other classes.  

  Another premise of reallocation is that firms conduct innovative research in multiple 

technological classes. A firm operating in many classes may be easier to move resource to one 

important class. Therefore, we estimate the effect of mergers on innovation with respect to the 

number of technological classes. A dummy Few Classes equals one if in the year prior to mergers, 

the number of technological classes of a firm is below the median value of all firms and equals 

zero otherwise. Table 6 reports the results. The positive coefficient on the triple interaction term 

means that innovation output of targeted classes increases more in firms with fewer technological 

classes. This result contradicts our reallocation hypothesis. Instead, it indicates that firms that 

concentrate innovation in fewer classes can conduct research in the targeted class where the patent 

value is more appropriable.   

 [Insert Table 6 about here] 

4.5. The aggregate effect of M&As 

As shown in the previous tables, M&As between innovation-user and innovation-producer can 

enhance the innovation output of the targeted technological class as well as the combined firm. In 

this part, we consider the aggregate effect at technological class level. To be more specific, a 

technological class involved in related M&As will experience an increase of innovation output. 
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We then construct a class-year panel dataset. The dummy Targeted Class equals 1 if that class is 

involved in at least one innovation related mergers and 0 otherwise. We control for class fixed 

effects in the regressions. Results are reported in Table 7. The positive coefficient means that after 

mergers, the innovation output quantity increases in technological classes that are involved in 

innovation related mergers.  

 [Insert Table 7 about here] 

4.6. Withdrawn M&As 

We also employ the identification strategy developed by Savor and Lu (2009). They compare the 

change of innovation around successful mergers to that of mergers withdrawn for reasons that are 

exogenous to innovation. We followed Bena and Li (2014) to construct the control group using 

withdrawn M&As. We begin with 191 unsuccessful friendly merger bids that are announced from 

1984 to 2007. We then keep deals where the news articles from Factiva did not mention R&D 

activity as a reason for the failure. The categories of filters are presented in Table 8, Panel A. The 

final control group includes 67 unsuccessful merger bids.  

 Next, we construct the treatment sample of completed deals that: (i) involve acquirers and 

target firms of which data is available in Compustat/CRSP; (ii) occur in related (unrelated) 

acquirer-target industry pairs that match related (unrelated) industry pairs of the bids in the control 

sample and are announced within the three-year window centered at the announcement year of the 

bids in the control sample (514 deals). For the control sample that are matched to multiple deals, 

we select the closest completed deal in terms of the relative size ratio (target firm’s total assets 

divided by acquirer’s total assets). 

 To estimate the different effect from successful mergers and failed mergers, we create a 

dummy Treated that equals one for successful M&As; Related equals one for M&As of two firms 
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from two related industries. Panel B shows that after a successful M&As, the patents increase 

when the two firms are from related industries. Panel C reports the falsification test results in which 

we falsely assume that the onset of treatment occurs four years before it actually does. Results in 

Panel C are expected to be insignificant. 

[Insert Table 8 about here] 

4.7. Robustness tests 

This study focuses on innovation user and innovation producer relationship instead of shared 

knowledge or technology proximity. Although our measure of innovation related M&As is 

difference from M&As between firms doing similar innovative research, it can still be the case 

that an industry is its own innovation user or producer, so that the increase of innovation is not 

from the synergy between innovation users and producers. To mitigate this concern, we exclude 

M&As between firms from the same industry and estimate equation (1) again. The results in Table 

9 shows that our results still hold. 

[Insert Table 9 about here] 

 

5. Conclusions 

Fundamental innovations usually involve huge upfront costs, but the benefits are spread across 

various sectors and are difficult for the inventors to appropriate. That means the innovations 

possess positive externalities and are underinvested in by individual firms. We empirically show 

that after M&As between firms from user industries and producer industries of innovations, the 

combined firm is able to internalize the positive externalities and enhance innovation output. We 

use failed M&As as an identification strategy, and the results are robust. 
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Using a firm tech-class level dataset, we find that the increase of firm level patents is driven 

by the patents in the technological class that is in a user-producer relationship with the target firm. 

While financially unconstrained acquirers fund more innovation in the targeted tech-classes, 

constrained firms move resources from other unaffected tech-classes to the targeted classes. The 

firm-class panel data also help to mitigate the concerns of mechanical increase and endogeneity.   
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Appendix: Variable Definitions 

NumPat: Natural logarithm of one plus firm i’s total number of patents filed (and eventually 

granted) in year t.  

 

NumCited: Natural logarithm of one plus a firm’s total number of citations received on the firm’s 

patents filed in year t. The total number of citations of a patent is the sum of citations within a 

three-year period starting from the patent award year. 

 

CitePat: Natural logarithm of one plus the average number of citations received per patent of the 

firm’s patents filed in year t. 

 

CiteWeightPat: Natural logarithm of one plus the number of citation-weighted patents based on 

the total citations received by firm i in year t. Citation-weighted patents are calculated as 

1 /j jj
C C , where 

jC is the number of citations to patent j and 
jC is the mean number of 

citations to patents granted in the same year as patent j. 

 

Generality: One minus the Herfindahl index of the citations received by the patent portfolio 

(patents filed by the firm in the previous five years) in year t based on two-digit technology 

classes. 

 

Originality: One minus the Herfindahl index of the citations made by the patent portfolio 

(patents filed by the firm in the previous five years) in year t based on two-digit technology 

classes. 

 

Patent Index: This measure is constructed in three steps. First, for each technology class k and 

patent application year t, we compute the median value of the number of awarded patents in 

technology class k with application year t across all firms that were awarded at least one patent in 

technology class k with application year t. Second, we scale the number of awarded patents to the 

acquirer/target firm in technology class k with application year t by the corresponding 

technology class-specific and application year-specific median value from the first step. Third, 

for the acquirer/target firm, we sum the scaled number of awarded patents from the second step 

across all technology classes and across application years. 
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Table 1: Summary statistics 

Panel A reports the summary statistics of key variables from 1984 to 2007, including 1,318 

acquiring firms and 2,804 M&A deals. If an acquiring firm conduct multiple M&As within three 

years, we exclude all those deals. Based on our definition of industry-level innovation relationship, 

1,567 M&As are between an innovation-user firm and an innovation-producer firm. The 

innovation measures are defined in the Appendix. Panel B, C, and D report the M&A summary 

statistics. The sample includes acquiring firms that filed at least one patent one year prior to the 

mergers. 

  

Panel A: Firm summary    

  Mean Median St. dev. 

Innovation Measures    
#Patents 30.400 3.688 107.171 

#Citations 54.932 4.000 221.505 

#Citations per patent 1.283 0.800 1.763 

#Patent - Citationweighted 61.403 6.157 220.182 

NumPat 1.664 1.251 1.428 

NumCited 1.495 1.011 1.498 

CitePat 0.502 0.438 0.406 

CiteWeightPat 1.975 1.576 1.628 

Patent Index 17.746 2.328 59.269 

Originality 0.479 0.500 0.287 

Generality 0.459 0.481 0.287 

    

Control Variables    

Assets Total 4775.677 671.175 17351.520 

ROA 0.084 0.123 0.169 

Leverage 0.210 0.195 0.156 

R&D/Assets 0.092 0.059 0.106 

Capex/Assets 0.057 0.050 0.034 

TobinQ 2.376 1.834 1.604 

Tangibility 0.253 0.205 0.178 

HHI 0.045 0.028 0.058 
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Panel B: Distribution by year of execution 

Period 

1984–

1987 

1988–

1991 

1992–

1995 

1996–

1999 

2000–

2003 

2004–

2007 Total 

#M&As 296 307 371 690 725 415 2,804 

#related M&As 110 135 192 413 455 262 1,567 

 

Panel C: Distribution of top five industries (4-digit SIC) for acquirers 

Industry (SIC) 

Prepackaged 

Software 

(7372) 

Semiconductors 

and Related 

Devices 

 (3674) 

Pharmaceutical 

Preparations 

(2834) 

Biological 

Products  

(2836) 

Surgical and 

Medical 

Instruments 

(3841) 

#M&As 215 182 153 80 75 

#related M&As 184 155 139 69 56 

 

Panel D: Distribution of top five industries (4-digit SIC) for targets 

Industry (SIC) 

Prepackaged 

Software 

(7372) 

Semiconductors 

and Related 

Devices (3674) 

Pharmaceutical 

Preparations 

(2834) 

Surgical and 

Medical 

Instruments 

(3841) 

Computer 

Peripheral 

Equipment 

(3577) 

#M&As 228 138 110 83 56 

#related M&As 179 128 106 68 52 

 

Panel E: Firm tech-class summary 

  

All Classes 

 

Related Classes 

 

Other Classes 

 

  Mean St. Dev. Mean St. Dev. Mean St. Dev. 

#Patents 6.643 20.445 10.279 29.128 5.530 16.768 

#Citations 15.525 72.853 25.094 107.390 12.597 58.035 

#Patent - Citationweighted 13.855 46.153 21.437 65.986 11.535 37.780 

NumPat 0.449 0.820 0.812 1.090 0.383 0.742 

NumCited 0.404 0.994 0.766 1.359 0.338 0.897 

CiteWeightPat 0.577 1.039 1.026 1.348 0.496 0.951 

Patent Index 1.262 5.847 2.685 9.063 1.004 5.008 

Originality 0.143 0.272 0.251 0.321 0.123 0.258 

Generality 0.137 0.267 0.237 0.317 0.119 0.253 
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Table 2: Univariate tests of innovation before and after M&As 

This table provides univariate test results of the innovation and firm characteristics before and after 

M&As. Panel A includes all related M&As and Panel B includes all unrelated M&As. An M&A 

is defined as “related” if the target and the acquirer are from two related industries; two industries 

are defined as “related” if patents filed by firms in one industry is among the top three industries 

citing or been cited by patents filed by firms in another industry in the previous 10 years. Panel C 

reports the results from a difference-in-difference univariate test by comparing the change of 

variables around related M&As to unrelated M&As. The variables are the mean value of three 

years before or after M&As. 

 

Panel A: Related M&As  

 After Before Diff p value N 

#Patents 62.499 52.403 10.097 0.002  1,567  

#Citations 116.555 155.361 -38.807 0.003  1,567  

#Patent - Citationweighted 130.816 116.135 14.681 0.041  1,567  

NumPat 2.285 2.287 -0.001 0.955  1,567  

NumCited 1.822 2.522 -0.701 0.000  1,567  

CiteWeightPat 2.628 2.768 -0.141 0.000  1,567  

Patent Index 35.170 32.202 2.968 0.099  1,567  

Originality 0.578 0.568 0.010 0.075  1,567  

Generality 0.544 0.553 -0.009 0.103  1,578  

R&D/Assets 0.099 0.106 -0.008 0.000  1,408  

Assets Total 7972.694 4376.186 3596.508 0.000  1,567  

ROA 0.097 0.114 -0.017 0.000  1,567  

Leverage 0.209 0.169 0.040 0.000  1,567  

Capex/Assets 0.046 0.064 -0.017 0.000  1,567  

TobinQ 2.236 3.110 -0.874 0.000  1,567  

Tangibility 0.211 0.240 -0.030 0.000  1,567  

HHI 0.036 0.030 0.005 0.000  1,567  
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Panel B: Unrelated M&As  

 After Before Diff p value N 

#Patents 47.479 42.159 5.321 0.073  1,237  

#Citations 76.525 90.845 -14.320 0.106  1,237  

#Patent - Citationweighted 95.285 82.948 12.337 0.040  1,237  

NumPat 2.042 2.131 -0.089 0.000  1,237  

NumCited 1.652 2.090 -0.438 0.000  1,237  

CiteWeightPat 2.328 2.487 -0.160 0.000  1,237  

Patent Index 28.131 28.044 0.087 0.958  1,237  

Originality 0.591 0.596 -0.004 0.514  1,237  

Generality 0.561 0.586 -0.025 0.000  1,237  

R&D/Assets 0.046 0.051 -0.005 0.000  951  

Assets Total 11480.556 6995.843 4484.713 0.000  1,237  

ROA 0.123 0.138 -0.015 0.000  1,237  

Leverage 0.263 0.228 0.035 0.000  1,237  

Capex/Assets 0.051 0.065 -0.014 0.000  1,237  

TobinQ 1.740 1.985 -0.245 0.000  1,237  

Tangibility 0.278 0.310 -0.032 0.000  1,237  

HHI 0.062 0.058 0.004 0.000  1,237  

 

Panel C: Difference in difference 

  Related Unrelated   
  Diff Diff DiD p value 

#Patents 10.097 5.321 4.776 0.143 

#Citations -38.807 -14.320 -24.487 0.071 

#Patent - Citationweighted 14.681 12.337 2.344 0.404 

NumPat -0.001 -0.089 0.088 0.008 

NumCited -0.701 -0.438 -0.263 0.000 

CiteWeightPat -0.141 -0.160 0.019 0.329 

Patent Index 2.968 0.087 2.881 0.123 

Originality 0.010 -0.004 0.014 0.048 

Generality -0.009 -0.025 0.016 0.032 

R&D/Assets -0.008 -0.005 -0.003 0.146 

Assets Total 3596.508 4484.713 -888.205 0.035 

ROA -0.017 -0.015 -0.002 0.339 

Leverage 0.040 0.035 0.005 0.175 

Capex/Assets -0.017 -0.014 -0.003 0.000 

TobinQ -0.874 -0.245 -0.629 0.000 

Tangibility -0.030 -0.032 0.002 0.167 

HHI 0.005 0.004 0.001 0.247 

 

  



29 

 

Table 3: Firm level innovation around related M&As 

This table tests the effects of related M&As on firm innovation, using unrelated M&As as a control 

group. The sample contains observations for six years before and six years after M&A. The 

dependent variables are the six measures of firm innovations. The key independent variable, after, 

equals one if the observation is after the M&As and zero otherwise. Related equals one if it is the 

merger is between firms from an innovation-user industry and an innovation-producer industry 

and equals zero otherwise. We include M&A deal fixed effects and year fixed effects. The standard 

errors are clustered at the deal level. 

 

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After -0.196*** -0.105*** -0.198*** -0.212*** -0.0274*** -0.0285*** 

 (-7.641) (-2.934) (-6.588) (-8.522) (-3.892) (-4.195) 

After * Related 0.185*** 0.0583 0.138*** 0.206*** 0.0189** 0.0252*** 

 (5.121) (1.160) (3.306) (5.870) (2.131) (2.942) 

R&D/Assets 0.309** 0.517*** 0.390** 0.387*** 0.0435 0.0104 

 (2.392) (2.911) (2.510) (3.030) (1.198) (0.323) 

Sales -0.162*** -0.135** -0.186*** -0.153*** -0.0412*** -0.0336*** 

 (-3.891) (-2.320) (-3.798) (-4.013) (-3.765) (-3.173) 

ROA 0.136* 0.188* 0.170* 0.172** 0.0267 0.0214 

 (1.669) (1.662) (1.793) (2.185) (1.312) (1.102) 

Leverage -0.205*** -0.178* -0.298*** -0.200*** 0.00852 -0.0278* 

 (-2.945) (-1.828) (-3.562) (-2.986) (0.489) (-1.708) 

Capex/Assets -0.215** -0.573*** -0.339*** -0.223** 0.0620* 0.0578* 

 (-1.967) (-3.669) (-2.580) (-2.168) (1.943) (1.857) 

TobinQ -0.00843*** 0.0232*** 0.00552 -0.00505 -0.00367*** -0.00342*** 

 (-2.658) (5.352) (1.488) (-1.559) (-4.111) (-4.026) 

Tangibility 0.914*** 1.496*** 1.155*** 0.776*** 0.0549 0.00558 

 (4.608) (5.184) (4.854) (4.057) (0.916) (0.0950) 

HHI 0.241** -0.419** 0.186 0.257*** 0.117*** 0.108*** 

 (2.334) (-2.540) (1.367) (2.582) (3.471) (3.125) 

       
Observations 26,965 26,965 26,965 26,965 26,965 26,965 

R-squared 0.872 0.823 0.855 0.860 0.648 0.683 

Deal FE Yes Yes Yes Yes Yes Yes 

Year FE YES YES YES YES YES YES 

Cluster Deal Deal Deal Deal Deal Deal 
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Table 4: Firm-class level innovation around M&As 

This table tests the effects of M&As on firm-class level innovation output. The key independent 

variable, after, equals one if the observation is after the M&As and zero otherwise. Targeted Class 

is a dummy variable that equals one if it is the technological class of the acquirer and the industry 

of the target has the innovation user-producer relationship and equals zero otherwise. We include 

M&A deal fixed effects and class by year fixed effects. The standard errors are clustered at the 

deal level. 

 

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After -0.0163*** 0.00601 -0.0156** -0.0131*** -0.00398** -0.00184 

 (-3.055) (0.848) (-2.338) (-2.925) (-2.218) (-1.067) 

Targeted Class 0.265*** 0.296*** 0.337*** 0.213*** 0.0679*** 0.0685*** 

 (14.28) (12.56) (14.92) (13.70) (14.39) (14.05) 

After * Targeted Class 0.0473*** -0.0519** 0.0371* 0.0351** 0.0212*** 0.0190*** 

 (2.650) (-2.110) (1.752) (2.372) (4.597) (4.137) 

R&D/Assets 0.127** 0.162** 0.161** 0.121** 0.0294 0.0226 

 (2.295) (2.263) (2.414) (2.554) (1.635) (1.322) 

Sales -0.0429*** -0.0839*** -0.0644*** -0.0365*** -0.0112*** -0.0104*** 

 (-3.570) (-4.449) (-4.217) (-3.752) (-2.850) (-2.644) 

ROA 0.0548 0.150*** 0.0585 0.0593** -0.0192 -0.0119 

 (1.543) (3.042) (1.366) (2.001) (-1.627) (-1.053) 

Leverage -0.0706*** -0.0433 -0.0860*** -0.0623*** -0.0114 -0.0118 

 (-3.152) (-1.467) (-3.155) (-3.340) (-1.447) (-1.450) 

Capex/Assets -0.173** -0.134 -0.158 -0.114 -0.124*** -0.128*** 

 (-1.989) (-1.013) (-1.459) (-1.559) (-4.242) (-4.508) 

TobinQ -0.00415*** 0.00256 -0.00357* -0.00324*** -0.00300*** -0.00282*** 

 (-2.767) (1.153) (-1.898) (-2.605) (-5.783) (-5.876) 

Tangibility 0.194*** 0.309*** 0.238*** 0.158*** 0.101*** 0.107*** 

 (3.595) (4.247) (3.657) (3.505) (6.041) (6.255) 

HHI 0.104** -0.00460 0.120** 0.0948*** 0.0304** 0.0179 

 (2.415) (-0.0735) (2.138) (2.729) (2.107) (1.429) 

       
Observations 319,884 319,884 319,884 319,884 319,884 319,884 

R-squared 0.533 0.502 0.509 0.509 0.403 0.416 

Deal FE Yes Yes Yes Yes Yes Yes 

Class*Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 
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Table 5: Firm heterogeneity – Financial constraints 

This table reports the effect of M&As among financially constrained and non-constrained firms. 

Financially constrained (unconstrained) firms are firm whose measure of financial constraints lies 

above (below) the median across all firms one year before the mergers. Panel A include financially 

constrained firms. Panel A include financially unconstrained firms. We include M&A deal fixed 

effects and class by year fixed effects. The standard errors are clustered at the deal level. 

 

Panel A: Subsample of financially constrained firms 

  (1) (2) (3) (4) (5) (6) 

VARIABLES NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After -0.0243*** -0.0161* -0.0299*** -0.0200*** -0.00516* -0.00485* 

 (-3.214) (-1.735) (-3.193) (-3.097) (-1.877) (-1.852) 

Targeted Class 0.275*** 0.286*** 0.335*** 0.223*** 0.0722*** 0.0742*** 

 (10.24) (8.517) (10.32) (9.822) (10.09) (9.753) 

After * Targeted Class 0.0300 -0.0793** 0.0315 0.0188 0.0189*** 0.0224*** 

 (1.101) (-2.144) (0.987) (0.820) (2.592) (3.095) 

R&D/Assets 0.200* 0.296* 0.259* 0.186** 0.0237 0.00716 

 (1.808) (1.873) (1.935) (1.983) (0.603) (0.196) 

Sales -0.0492*** -0.0895*** -0.0712*** -0.0406*** -0.0115* -0.0130** 

 (-2.693) (-3.234) (-3.095) (-2.685) (-1.861) (-2.069) 

ROA 0.0937 0.152* 0.110 0.0899* -0.0240 -0.0129 

 (1.607) (1.825) (1.569) (1.798) (-1.246) (-0.699) 

Leverage -0.0550* -0.110*** -0.0800** -0.0515* -0.00978 -0.00888 

 (-1.725) (-2.768) (-2.051) (-1.921) (-0.879) (-0.785) 

Capex/Assets 0.0669 0.203 0.0794 0.0904 -0.0529 -0.0615 

 (0.578) (1.170) (0.550) (0.960) (-1.251) (-1.541) 

TobinQ -0.00800** -0.00217 -0.00808** -0.00642** -0.00472*** -0.00424*** 

 (-2.491) (-0.508) (-2.125) (-2.432) (-4.172) (-3.657) 

Tangibility 0.134* 0.149 0.153* 0.109* 0.101*** 0.112*** 

 (1.819) (1.438) (1.714) (1.766) (4.186) (4.391) 

HHI 0.108 -0.00865 0.115 0.0865 0.0427* 0.0190 

 (1.415) (-0.0804) (1.180) (1.395) (1.780) (0.869) 

       
Observations 145,667 145,667 145,667 145,667 145,667 145,667 

R-squared 0.547 0.516 0.522 0.516 0.409 0.421 

Deal FE Yes Yes Yes Yes Yes Yes 

Class*Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 
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Panel B: Subsample of financially unconstrained firms 

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After -0.00173 0.0233** 0.00374 -0.000959 -0.00233 0.00145 

 (-0.227) (2.178) (0.388) (-0.153) (-0.933) (0.603) 

Targeted Class 0.253*** 0.303*** 0.335*** 0.203*** 0.0654*** 0.0652*** 

 (10.09) (9.390) (10.90) (9.674) (10.40) (10.28) 

After * Targeted Class 0.0510** -0.0433 0.0290 0.0405** 0.0176*** 0.0111* 

 (2.127) (-1.301) (1.009) (2.063) (2.838) (1.812) 

R&D/Assets 0.151** 0.149* 0.168* 0.137** 0.0454** 0.0425** 

 (2.000) (1.708) (1.839) (2.146) (2.020) (2.017) 

Sales -0.0266 -0.0662** -0.0412 -0.0240 -0.00695 -0.00441 

 (-1.309) (-2.139) (-1.604) (-1.472) (-1.149) (-0.740) 

ROA 0.0837 0.205*** 0.0752 0.0854* -0.00333 -0.000958 

 (1.512) (2.831) (1.120) (1.873) (-0.185) (-0.0557) 

Leverage -0.0892*** 0.0624 -0.0906** -0.0761*** -0.0126 -0.0116 

 (-2.601) (1.344) (-2.172) (-2.693) (-1.043) (-0.917) 

Capex/Assets -0.262** -0.316 -0.227 -0.181* -0.164*** -0.157*** 

 (-2.119) (-1.607) (-1.455) (-1.729) (-3.982) (-3.792) 

TobinQ -0.00282 0.00581** -0.00186 -0.00219 -0.00293*** -0.00278*** 

 (-1.521) (2.065) (-0.772) (-1.424) (-4.815) (-4.986) 

Tangibility 0.242*** 0.458*** 0.300*** 0.199*** 0.107*** 0.104*** 

 (3.050) (4.411) (3.128) (2.988) (4.355) (4.298) 

HHI 0.0761 0.0343 0.122* 0.0758* 0.0151 0.0119 

 (1.414) (0.442) (1.715) (1.768) (0.779) (0.720) 

       
Observations 166,805 166,805 166,805 166,805 166,805 166,805 

R-squared 0.565 0.532 0.544 0.550 0.443 0.458 

Deal FE Yes Yes Yes Yes Yes Yes 

Class*Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 
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Table 6: Firm heterogeneity – Number of technological classes 

This table reports the effect of M&As among firms that conduct innovation in few technological 

classes and many technological classes. Few Classes is a dummy variable indicating whether the 

firm’s number of technological classes is below the median across all firms one year before the 

mergers and equals zero otherwise. We include M&A deal fixed effects, technological class and 

year fixed effects. The standard errors are clustered at the deal level. 

 

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After -0.0295*** -0.0450*** -0.0411*** -0.0250*** -0.00698*** -0.00839*** 

 (-4.558) (-5.234) (-5.147) (-4.635) (-3.145) (-3.946) 

Targeted Class 0.383*** 0.459*** 0.474*** 0.306*** 0.0879*** 0.0898*** 

 (16.42) (15.21) (16.72) (15.54) (15.25) (15.19) 

After * Targeted Class 0.0261 -0.141*** 0.00747 0.0188 0.0123** 0.0140** 

 (1.138) (-4.303) (0.276) (0.976) (2.240) (2.553) 

After * Few Classes 0.0438*** 0.166*** 0.0841*** 0.0402*** 0.00940*** 0.0216*** 

 (4.332) (10.94) (6.529) (4.869) (2.699) (6.321) 

Targeted Class * Few Classes -0.399*** -0.545*** -0.459*** -0.310*** -0.0672*** -0.0715*** 

 (-14.75) (-15.23) (-13.71) (-13.86) (-8.858) (-9.116) 

After * Targeted Class * Few Classes 0.0731*** 0.290*** 0.100*** 0.0553** 0.0275*** 0.0139 

 (2.583) (7.365) (2.957) (2.398) (3.032) (1.600) 

R&D/Assets 0.136** 0.164** 0.168** 0.130*** 0.0305* 0.0247 

 (2.479) (2.378) (2.557) (2.781) (1.707) (1.457) 

Sales -0.0406*** -0.0794*** -0.0608*** -0.0345*** -0.0109*** -0.01000** 

 (-3.421) (-4.230) (-4.046) (-3.593) (-2.756) (-2.530) 

ROA 0.0541 0.126*** 0.0527 0.0593** -0.0193 -0.0135 

 (1.528) (2.587) (1.237) (2.008) (-1.633) (-1.192) 

Leverage -0.0723*** -0.0499* -0.0893*** -0.0633*** -0.0118 -0.0126 

 (-3.222) (-1.728) (-3.278) (-3.388) (-1.497) (-1.536) 

Capex/Assets -0.143* -0.114 -0.128 -0.0850 -0.116*** -0.124*** 

 (-1.706) (-0.877) (-1.217) (-1.222) (-4.004) (-4.389) 

TobinQ -0.00467*** 0.00317 -0.00400** -0.00368*** -0.00332*** -0.00307*** 

 (-2.939) (1.422) (-1.997) (-2.800) (-6.270) (-6.122) 

Tangibility 0.198*** 0.290*** 0.237*** 0.162*** 0.103*** 0.107*** 

 (3.716) (4.059) (3.674) (3.645) (6.102) (6.244) 

HHI 0.104** 0.00704 0.124** 0.0950*** 0.0305** 0.0191 

 (2.428) (0.114) (2.205) (2.730) (2.103) (1.517) 

       
Observations 316,849 316,849 316,849 316,849 316,849 316,849 

R-squared 0.536 0.506 0.512 0.512 0.403 0.417 

Deal FE Yes Yes Yes Yes Yes Yes 

Class*Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 
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Table 7: Tech-class level regression 

This table tests the effect of related M&As on technological level innovation output. The sample 

includes class-year observations. Targeted Class equals 1 if that class is involved in at least one 

innovation user-producer mergers and 0 otherwise. 

 

 

  (1) (2) (3) (4) (5) 

 NumPat NumCited CiteWeightPat Originality Generality 

            

Targeted Class 0.204*** 0.0955*** 0.217*** -0.00660** 0.00295 

 (4.726) (2.594) (4.829) (-2.126) (1.190) 

      
Observations 9,797 9,797 9,797 9,797 9,797 

R-squared 0.886 0.847 0.877 0.717 0.727 

Class FE Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes 

Cluster Class Class Class Class Class 
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Table 8: Failed Mergers 

Panel A reports the steps to construct the control M&A deals. We exclude deals that are withdrawn 

due to reasons endogenous to innovation. In Panel B, Treated is a dummy equals one if it is a 

successful M&A and equals zero for a failed M&A. Related equals one if it is the merger is 

between firms from an innovation-user industry and an innovation-producer industry and equals 

zero otherwise. In Panel C, we falsely assume that the onset of treatment occurs six years before 

it actually happens. 

 

Panel A: Control sample construction 

191 All unsuccessful merger bids (excluding financial firms) 

  
-12 Difference in corporate philosophy over growth strategy (not involving R&D) 

-58 Other competing bids emerged and the acquisition with the competitor went through 

-30 Valuation issues/Problem (not involving R&D) revealed over the course of negotiations 

-4 Market/analysts expected the deal to fail 

-20 Not enough information/negotiations not completed/exogenous events (e.g., 1987 crash) 

67 Final control group 
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Panel B: Post-acquisition innovation  

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After 1.286*** 0.281* 1.489*** 0.432** 0.0743 0.0608 

 (2.773) (1.992) (2.890) (2.053) (1.162) (0.982) 

Treated 0.829 0.139 0.837 0.289 0.112 0.0926 

 (0.973) (0.626) (0.900) (0.777) (1.133) (0.995) 

After * Treated -1.305*** -0.264* -1.499*** -0.381*** -0.168*** -0.139** 

 (-4.038) (-1.989) (-4.229) (-3.410) (-2.712) (-2.661) 

After * Related -1.050** -0.132 -1.199** -0.510** 0.0374 0.0719 

 (-2.523) (-0.713) (-2.513) (-2.483) (0.473) (0.969) 

Treated * Related -0.253 0.130 -0.0556 -0.171 -0.0471 0.0479 

 (-0.239) (0.341) (-0.0462) (-0.385) (-0.317) (0.327) 

After * Treated * Related 1.583** 0.112 1.728** 0.853*** 0.0210 -0.0481 

 (2.603) (0.351) (2.464) (3.086) (0.210) (-0.514) 

R&D/Assets 1.686 3.523*** 3.578 -1.778 1.874*** 1.814*** 

 (0.364) (2.759) (0.762) (-1.268) (3.622) (3.928) 

Sales 0.0478 -0.0604 0.0258 0.0555 -0.0594*** -0.0554** 

 (0.484) (-1.106) (0.230) (1.624) (-3.191) (-2.339) 

ROA 3.312** 0.426 3.067* 0.583 0.0832 0.114 

 (2.112) (0.606) (1.733) (1.035) (0.343) (0.472) 

Leverage 0.389 -0.0416 0.423 -0.0807 0.190 0.266*** 

 (0.385) (-0.209) (0.377) (-0.200) (1.657) (2.761) 

Capex/Assets 1.952 0.856 2.423 0.440 0.278 0.316 

 (1.538) (1.227) (1.542) (1.150) (1.424) (1.625) 

TobinQ 0.0998* 0.0889*** 0.163** 0.0314 0.0210** 0.0152* 

 (1.890) (3.351) (2.686) (1.310) (2.198) (1.845) 

Tangibility -5.818*** -1.465** -6.592*** -1.886*** -0.398** -0.471** 

 (-4.459) (-2.055) (-4.087) (-3.860) (-2.172) (-2.615) 

HHI 1.067 0.000613 1.091 0.832 -0.101 -0.165 

 (0.936) (0.00170) (0.963) (1.528) (-0.519) (-0.906) 

       
Observations 472 472 472 472 472 472 

R-squared 0.839 0.704 0.837 0.861 0.789 0.812 

Deal FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 
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Panel C: Falsification test 

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After 0.502 -0.0919 0.589 0.0295 0.112 -0.147 

 (0.425) (-0.103) (0.358) (0.130) (0.488) (-0.468) 

Treated 0.175 -0.186 0.237 -0.463 0.0269 -0.220 

 (0.115) (-0.204) (0.125) (-0.739) (0.107) (-0.696) 

After * Treated -0.296 0.540 -0.186 0.245 0.0263 0.258 

 (-0.230) (0.598) (-0.107) (0.575) (0.104) (0.796) 

After * Related -0.599 0.282 -0.522 -0.146 -0.125 0.146 

 (-0.478) (0.297) (-0.303) (-0.509) (-0.521) (0.457) 

Treated * Related -0.725 0.977 -0.323 -0.248 -0.0873 0.251 

 (-0.460) (0.891) (-0.156) (-0.351) (-0.324) (0.776) 

After * Treated * Related 1.251 -0.710 1.085 0.385 -0.0583 -0.259 

 (0.871) (-0.710) (0.573) (0.687) (-0.222) (-0.779) 

R&D/Assets 4.056 6.472* 7.001 2.373 1.828* 0.869 

 (0.848) (1.939) (1.273) (1.137) (1.985) (0.854) 

Sales -0.353** -0.139 -0.468** -0.0602 -0.140*** -0.134*** 

 (-2.600) (-1.301) (-2.482) (-1.050) (-4.608) (-4.114) 

ROA 5.032** 2.518** 6.211*** 0.236 0.435 0.422 

 (2.593) (2.569) (3.088) (0.392) (1.055) (0.872) 

Leverage -0.868 0.999 -0.187 -0.725 -0.437* -0.1000 

 (-0.549) (1.492) (-0.108) (-0.939) (-1.881) (-0.442) 

Capex/Assets 0.888 0.131 0.924 -0.143 0.268 0.138 

 (0.678) (0.162) (0.624) (-0.301) (1.110) (0.548) 

TobinQ 0.0505 0.130** 0.144 0.0119 -0.0254* -0.0104 

 (0.613) (2.385) (1.491) (0.313) (-1.707) (-0.690) 

Tangibility -6.025*** -1.113 -5.674** -2.058** -0.781** -0.387 

 (-2.797) (-0.854) (-2.299) (-2.389) (-2.317) (-0.982) 

HHI 9.605 -6.095* 5.309 6.844** -1.079 -1.939 

 (1.122) (-1.799) (0.579) (2.168) (-0.523) (-0.823) 

       
Observations 187 187 187 187 187 187 

R-squared 0.927 0.840 0.921 0.932 0.918 0.899 

Deal FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 
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Table 9: Robustness check – Exclude M&As from the same industry 

This table tests the effects of related M&As on firm innovation after excluding M&As where 

acquirers and targets are from the same industry. The sample contains observations for six years 

before and six years after M&As. The dependent variables are the six measures of firm innovations. 

The key independent variable, after, equals one if the observation is after the M&As and zero 

otherwise. Related equals one if it is the merger is between firms from an innovation-user industry 

and an innovation-producer industry and equals zero otherwise. We include M&A deal fixed 

effects and year fixed effects. The standard errors are clustered at the deal level. 

 

  (1) (2) (3) (4) (5) (6) 

 NumPat NumCited CiteWeightPat 

Ln(Patent 

Index) Originality Generality 

              

After -0.103*** -0.0530 -0.118*** -0.131*** -0.0146** -0.0210*** 

 (-4.174) (-1.552) (-4.109) (-5.380) (-2.063) (-3.110) 

After * Related 0.157*** 0.0113 0.114* 0.193*** 0.00378 0.0215* 

 (3.109) (0.154) (1.951) (3.802) (0.334) (1.953) 

R&D/Assets 0.375** 0.407* 0.402** 0.448** 0.0543 -0.00169 

 (2.172) (1.694) (1.979) (2.424) (1.150) (-0.0394) 

Sales -0.180*** -0.104 -0.183*** -0.163*** -0.0481*** -0.0387*** 

 (-3.352) (-1.411) (-2.926) (-3.249) (-3.502) (-2.970) 

ROA 0.289** 0.166 0.307** 0.302** 0.0343 0.0160 

 (2.445) (1.037) (2.360) (2.538) (1.302) (0.660) 

Leverage -0.124 0.00266 -0.155 -0.146 0.0164 -0.00563 

 (-1.314) (0.0204) (-1.387) (-1.571) (0.743) (-0.288) 

Capex/Assets -0.171 -0.536*** -0.341** -0.184 0.0827* 0.0724* 

 (-1.277) (-2.815) (-2.122) (-1.423) (1.879) (1.703) 

TobinQ -0.00814 0.0267*** 0.00658 -0.00362 -0.00400*** -0.00396*** 

 (-1.569) (3.912) (1.112) (-0.649) (-2.702) (-3.011) 

Tangibility 0.787*** 1.211*** 1.128*** 0.639*** 0.00784 -0.0272 

 (3.329) (3.444) (3.924) (2.696) (0.0958) (-0.339) 

HHI 0.146 -0.222 0.230 0.127 0.100** 0.0937* 

 (1.010) (-0.968) (1.194) (0.900) (1.975) (1.806) 

       
Observations 15,579 15,579 15,579 15,579 15,579 15,579 

R-squared 0.880 0.834 0.865 0.864 0.646 0.686 

Deal FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Cluster Deal Deal Deal Deal Deal Deal 

 




